

Current Trends in T&E

William F. Tosney

Overview

- Background
- Near-Term History Assessment
- Refocus on Systems Engineering
- T&E Trends and Issues
- Current Initiatives and General Conclusions

The Roller Coaster of "How to" Trends

Source: The Application of Best Practices to Space Vehicles, RANS Study, May 2000

Successful Programs Avoid Extreme Trends

Background

- The 90's Saw "Radical New Directions" for Space System Development ("to save \$\$\$")
 - <u>DoD</u> "Acquisition Reform"
 - NASA "Faster, Better, Cheaper"
 - Commercial "Best Practices"

Improving the Development Process Is a Laudable Goal.

How Well Were Inherent Risks Understood?

Overview

- Background
- Near-Term History Assessment
- Refocus on Systems Engineering
- T&E Trends and Issues
- Current Initiatives and General Conclusions

Decrease in Overall Satellite Quality

1st Year Catastrophic Failures - 454 SVs -

1st Year Catastrophic Failures and 3 Year Degradation - 394 SVs -

Cost and Schedule Savings on the Ground Are Far Outweighed by Lost Opportunity

A Critical Need Exists to Better Understand Risk Issues and Their Relationship to T&E

Mishaps Occur Too Often and Are Repeated

- Success rates are stuck
 in low-90% levels
- Over \$12 Billion in lost assets since 1990
- Best practices and lessons are compartmentalized at best

Programmatic Insight Is Varied

- Acquisition reform roadmap unclear
- "Program centric" and increasingly constrained
- Loss of heritage data and lessons a reality
- Better Disciplined Systems Engineering Processes and More Effective Industry-wide Technical Communication of Issues Are Key to Improving Mission Success

Industry-wide Trends

- Declining Quality, Safety, and Systems Engineering Are not Unique to the Space Industry
- AF Implemented Policy on Operational, Safety, Suitability, and Effectiveness (OSS&E) as Result of Numerous Mishaps
 - -B1B mishap traced to a flawed re-design
 - » Loss of technical oversight and communication between contractors

- T-3A Firefly mishap traced to marginal design and qualification (6 deaths)
 - » Procured as COTS product
 - » Loss of technical oversight and intentionally abbreviated testing

Space Industry Re-calibrates

Launch Vehicle BAR: Re-emphasize oversight vs. insight

Boeing Review: Quality must be the highest priority

L-M Review Team: Rigorously "test like you fly"

NASA Mars Panel: "Mission Success First" - a cultural

shift

NASA FBC Review: Too many mission failures failed to

adhere to <u>established standards</u>

RAND Study: FBC - an <u>uncontrolled experiment</u>

Space Is a High Risk, Craftsmanship Industry and Veering Away From Proven Processes is a Costly Gamble

Overview

- Background
- Near-Term History Assessment
- Refocus on Systems Engineering
- T&E Trends and Issues
- Current Initiatives and General Conclusions

Root Cause - "Why Things Went Awry?"

- Acquisition Agents Relegated to a "Trust and See" Role
 - Risk, especially development, transferred largely to contractors (TSPR)
 - Systems are becoming increasingly more complex
 - Commercial space market and contractors cannot carry the burden alone
- Cost and Schedule Became the Focus of Risk Management
 - Deviation from conventional practices (CAIV)
 - Reduced oversight at contractors is a major issue with insurance brokers
- Systems Engineering and Test Disciplines Greatly Eroded
- Specs and Standards Loosely Applied
- PMP Quality and Review Processes Dramatically Curtailed
 - Reductions in government oversight were not mitigated by contractors as intended (especially at subcontractor level)
 - ➤ Major reductions in DCAA, Gov't, contractor, and subcontractor oversight
 - MA largely decoupled from design process
 - ➤ MIL-HDBK-217 / FMECA / PRA considered "burdensome"
 - ➤ Vigorous pedigree reviews "off the table"

Disciplined Systems Engineering Is Key to an Effective T&E Program

Factors Influencing Test Perceptivity:

- Analytical prediction accuracy
- Testability
- Interfaces
- Selected measurements
- Measurement uncertainty
- Test equipment limitations
- Multiple environments
- Integration effects

Multiple

Complex Integration

Measurement

Orbit temp

Pressure/leak

Vacuum

EM I/EMC

Temp cyc

EM I/EMC

Pressure/leak

Vacuum

© Lockheed Martin Corp. 2000 All Rights Reserved

Harsh Environments

Major Efforts Are Underway to Reinvigorate Systems Engineering

- SMC and NRO Are in the Early Phases of Reinvigorating SE
 - System architecture and acquisition planning
 - Program management, development and engineering oversight
- Improving SE and Development Processes Requires Some Insight and Knowledge Gained From Experience
 - Planning, development, production, and process modeling solutions should evolve from proven methods and with full anticipation of growing risk areas
 - Engineering insight is essential (anyone can reduce cost & schedule)
 - > Optimize SE processes for "defined" mission success (this is not a mass production industry)
 - ➤ An "overnight" or "one-fix" solution is not likely
- Evaluating Acquisition/Development Models From Successful and Failed Programs is Key
 - Develop a modeling strategy based on key influencing variables
 - Determine the most perceptive SE and mission assurance practices
- Mission Assurance and Risk Management Are Becoming a Much More Integral and Disciplined Part of SE
 - Process "health status" metrics (based on cost, schedule, performance and risk)
 - Independent assessment of design margin erosion

Conventional Test Best Practices

- MIL-HDBK-340, "Test Requirements for Space Vehicles" Is the Umbrella Test Guideline Document
- MIL-HDBK-343, "Design, Construction, and Testing of One of a Kind Space Equipment"
 - Applies risk criteria to MIL-STD-1540
 - Will be "reformulated" as the key SE SPO handbook for NSS systems

Associated Space Hardware Test "Guidelines"

Standards Initiatives Have Re-emerged

Mil-Std-1540 Space System Test Standard

- In the "industry coordination" phase as of this week
- Intended to be compliance standard "on contract"

AIAA CPSRS

Reviewing all space systems related standards/specs

AIAA CoS/RAVT Working Group

- Requirements, Analysis, and Verification and Test
- Physical and environmental interfaces
- Pre and post launch operations and processes
- Mission assurance and risk management

• International Standards Organizations (ISO)

- Multiple standards dealing exclusively with space systems
- Down to the "Thou shalt" level

SE-Related "Actionable" Recommendations

- Change Government Acquisition Policies to Address Appropriate Specifications, Standards, and Best Practices
 - Not to be confused with the "old ways" of doing business
- Develop an Experienced-Based SE Handbook for NSS SPOs
 - Use MIL-HDBK-343 as a model
 - Address the acquisition life-cycle and program risk options
- Develop an NSS Problem Information Sharing Network
 - PMP Alerts
 - COTS hardware pedigree experience
- Develop an NSS Lessons Learned System
 - Critical lessons should be policy
- Develop an Overarching NSS Best Practice Information Sharing System Linked to Appropriate Specifications, Standards, Lessons Learned and Alert System

Overview

- Background
- Near-Term History Assessment
- Refocus on Systems Engineering
- T&E Trends and Issues
- Current Initiatives and General Conclusions

General Comments on T&E Trends

- Test Is Rarely Ahead of Advancing Technology, but Is Anticipatory and Reactive by Nature
 - Tests are continually improved and revised to address:
 - » Technology unique problems
 - >> Design margin robustness and new failure mechanisms
 - >> Lessons learned
 - Unexpected issues are later incorporated into design changes, Specifications,
 Standards, and Best Practices as the result of lessons learned
- The Need, However, for More Effective Test and Evaluation Practices is Growing Rapidly
 - Hardware complexity is continually increasing
 - Software complexity issues are becoming more prevalent
 - Parts vendors no longer cater to high-rel customers
 - Loss of standards and less disciplined systems engineering practices

Reducing Test Thoroughness Increases Risk of Failure

Measure of Compliance with MIL-STD-1540

Government and Commercial Testing Trends
Are Less Conservative Than in the Past

Software Increasingly Matters

SW-Related Failures

SOURCE: P. Cheng, The Aerospace Corporation.

- Incomplete requirement implementation
- Improper s/w changes or code reuse

- Latent defects
- Inadequate configuration management

As Complexity Increases, So Too Does the Tendency to Test in Orbit...Often with Unanticipated Consequence

Test / Reliability / Data Feedback

- Continuous Feedback Is Key to Process Improvement in Era of Acquisition Reform
 - Factory
 - Launch base
 - Orbital experience
 - Space environment
 - End of life mechanisms
 - "Cross-program experience"

• NSSI Goal: Improve the effectiveness of SE and T&E processes

T&E-Related "Actionable" Recommendations

• Form a Government Committee to Coordinate Executable Recommendation for Critical T&E Best Practices

- Establish government working group to identify cross-program T&E Best Practices
- Evaluate T&E Best Practices identified from NRO Test Strategy Review
- Sponsor updating of appropriate T&E spec/stds

Sponsor the Development of an Information Sharing System

- Develop government contractor information sharing process
- Sponsor development of computer-based deployment system
- Sponsor annual government-contractor T&E workshop

Sponsor Cross-Program "Data Mining" Studies Across NSS Programs for T&E Process Improvement

- Begin with unit level thermal screening model
- Identify T&E lessons learned for submittal to NSS Lessons Learned WG

Overview

- Background
- Near-Term History Assessment
- Refocus on Systems Engineering
- T&E Trends and Issues
- Current Initiatives and General Conclusions

1. "T&E Best Practices" Initiative

Space Commission Recommendation:

Align AF and NRO programs to adopt proven "best practices" for space research, development, acquisition and operations.

DoDD 5100.89:

NSSI lead an effort to recommend <u>T&E best practices</u> and make them readily accessible across the NSS community to improve overall effectiveness.

Undersecretary of the Air Force Action Plan:

- Government led team will evaluate and recommend a baseline set of proven T&E best practices
- Recommend process improvements to make T&E best practices accessible and executable throughout the NSS
- Coordinate and integrate where appropriate, BPT recommendations with other ongoing activities (e.g., SE reinvigoration, spec and standards updates, etc.)
- Present final recommendation and action plan to DoD Executive Agent for Space in June 2003

Resurrecting Part of the SE Formulae

- The Formulae to Design, Develop, and Test Satellites and Launch Vehicles Were Mandated Out of Existence in the '90s
- What Remains Are Largely Guideline Documents
 - Key standards are no longer maintained
- Critical Lessons Learned in the Form of Commander's Policies Were Also Abandoned
 - These are in the process of being resurrected
- SMC-Aerospace Are Responsible for Maintaining the T&E Formulae (relevant to Specs/Stds) and Efforts Are Underway to Rekindle and Expand the Original Focus
 - —Database tools and data sharing
 - OSS&E policy implementation
 - Lessons learned process
 - Test standards and handbooks

Integrating Risk with Knowledge to Improve T&E and SE Processes

Risk Management Deals with Uncertain Knowledge

- Relies largely on experience of the past for future projection
- Formal risk assessment process and models enable higher confidence projection
- Risk management is speculative without some form of knowledge management

Commander's Policies

- Previous Government Lessons Learned System -

Commander's Policies Established in 1972

- Flight critical lessons learned became Center policies or AF regulations
- SAF/AQ Lightning Bolt #4 rescinded due to cost/oversight burden

Proven Mission Assurance 1972-1995

- Example: Independent mass/control/stability analysis (SDR 550-4)
 - » No failures, 5 "diving catches" in SMC programs
 - » 7 failures in non-SMC programs

• 1999 Launch Vehicle BAR Attributed at Least Six Failures to Overlooking Lessons

- Tasked SMC/Aerospace to revitalize lessons learned process
- Concerned with initial EELV risks

18 New LV Programs Since 1980

 Launch Sequence:
 1st
 2nd
 3rd
 4th
 5th

 Success Rate:
 60%
 70%
 88%
 100%
 86%

2. "Lessons Learned" Policy Directive

LV BAR Recommendation 5:

Air Force makes SMC/CC responsible for timely, formalized mechanism to capture and disseminate lessons learned across programs and contractors

LV BAR Recommendation 12:

Ensure lessons learned from heritage programs are applied to EELV

Air Force BAR Action Plans to SecAF (01/00):

- Aerospace and contractors share lessons across SMC and NRO programs
- Capture and disseminate lessons learned across Center through SMC Chief Engineer Council
- Task SPO/Aerospace team to develop formal process and implement by 04/01/00
- Implemented via OSS&E Policy AFPD 63-12 and SMCI 63-1201

SMC-Aerospace Lessons Learned System Intended to Help Community Avoid Critical Mistakes

Lessons Learned Process

The Obstacle

Space Industry Test Experience Is Poorly Documented/Evaluated

Catastrophes Are the Exception

— Challenger, Titan 34D, Leasat, Hubble Space Telescope...

Successful Test Programs Are Not Adequately Analyzed

- Why were they successful?
- Would more testing have lead to greater success?
- Would they have been equally successful with less testing?
- Would different (less costly) tests have been equally or more successful?
- What tests provide little or no added value?
- Would more stressful testing at lower levels of assembly reduce overall costs?

The Solution

- Collect, Study, Evaluate, Interpret Historical Pedigree, Failure, and Test Data From Past Launch and Space Vehicle Programs
 - Embrace the principle of an integrated corporate database
- Establish Standard Requirements and Procedures to Automate Acquisition of Data From New Programs – Add to Database
- Form Industry-wide Workshop to Share Lessons and Collaborate on Best Practices Related to Test and Mission Assurance Processes
 - Develop optimized test models and requirements
 - Provide input for revision to "guideline" documents and standards
 - Develop improved methods to exchange critical problem alerts
 - Develop framework for empirical-based risk management solutions

Enterprise Information Management

Leverage Cross-Program Knowledge to:

- Manage Risk
- Reduce Cost & Schedule
- "Mine" Lessons Learned
- Evaluate Test Effectiveness
- Improve Design
- Optimize Processes
- Prevent Defects

Product Lifecycle Collaboration Tools

Integrated "Product-Process-Resource"

Seamless
Requirements Traceability

Pedigree Assessment & Flight Certification

EELV Mission Success Tenets - Post LV BAR -

- Establish a Culture Where "Mission Success" is Everyone's "Number One" Priority
- Reinvigorate System Engineering (SE) Process
 - Emphasize SE Early in Development
- Define Clear Roles & Responsibilities
- Manage Risk Systematically & Proactively
- Establish Solid Configuration & Process Controls
 - Use clearly documented processes & procedures
- "Test like you fly—fly like you test"
- Work to Eliminate Unverified Failures
- Conduct Independent Verification & Validation of Mission Critical h/w, s/w, and Processes
- Vigorous Post-Flight Analysis
- Capture & Leverage Lessons Learned

Overarching Conclusions

- Government and Industry Pushed the "Risk Envelope" Too Far Without a Clear Roadmap
 - The relationship between mission assurance and T&E was largely decoupled from SE
 - Risk management was and remains a fledgling discipline on many programs
- Unrealistic Schedules, Cost, and Commercial Market Assumptions Resulted in Aggressive Cost Cutting or Risk Taking at the Same Time System Complexity Increased
 - Many new systems about to be fielded fall into this category
- "Mission Success First" is Clearly a Cost-Justified Goal
- NSS Is Taking Dramatic Steps to Reorient

Systems Engineering Needs to be a First Order Concern with "Strong" Management Buy-in

